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Abstract

This brief report explains the method used for parameter calibration and model validation in
SST/Macro and the set of tools and workflow developed for this purpose.
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1 Introduction

UQTk relies on Bayesian inference methods for model parameter calibration. Model validation
is a direct result of calibration post-processing. Specifically, a model is considered validated if
the calibrated model parameters and the associated uncertainties can well explain or predict the
available data. The library allows for implementation of Bayesian calibration using Markov chain
Monte Carlo (MCMC) methods.

The MCMC technique essentially searches the parameter space and compares model results with
available data. However, each parameter sample invokes a model evaluation, and as a result the
MCMC approach requires that many samples be processed for properly estimating the uncertain-
ties, which can quickly become computationnally too costly. In such cases, our modeling approach
is to replace the full model, viewed as a black-box, by a surrogate, again as a black-box itself, that
is constructed by the forward UQ techniques also available in UQTk.

In the following sections we describe the set of tools which we have developed in order to imple-
ment this approach and we briefly illustrate their use for an examplar case.
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2 Pre-requisites

In order to run the UQ workflow which is described hereafter, you need to have SST/Macro and
UQTk installed on your system. You will also need Python.

2.1 Python

The scripts provided with the UQ workflow are known to work with Python 2.7.3.

The following Python modules are needed: os, sys, getopt, subprocess, shutil, math, random,
array, numpy, scipy, and cPickle.

2.2 SST/Macro

The UQ worfklow is known to work with a build of change set 2925:75b84bad7398 of SST/Macro.
No particular configuration options are required.

2.3 UQTk

The UQ workflow is known to work with dynamically linked libraries built and installed from
commit 17eb4b9b177bbb29f182e7697331feb1e6a6bd28 of UQTk.

You will need to build and UQTk with it Python bindings (PyUQTk turned ON).
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3 Method and Tools

3.1 Overview

The parameter calibration worflow is decomposed in the following steps, which can be regrouped
in two main phases:

1. The first phase is the one in which the surrogate models are generated, using the following
scheme:

(a) A pre-processing step whose aim is to generate a set of quadrature points across the
multi-dimensional parameter space. Specifically, a set of quadrature points are gener-
ated using a projection-based methodology available in UQTk which samples the Carte-
sian product of the support of the initial uniform prior distributions for the parameters
to be inferred.

(b) A main processing step, in which a SST/Macro simulation per each of the aforemen-
tioned quadrature points is executed. This is the most computationnaly costly part of
the workflow, but it lends itself to an embarrasingly parallel implementation.

(c) A post-processing step of the SST/Macro simulations, whereby as many surrogate mod-
els as there are experimental observations are generated, in the form of polynomial
chaos expansions.

2. In the second stage, the parameter calibration per se is performed with MCMC scheme as
follows:

(a) A pre-processing step where the surrogate models output are retrieved for the polyno-
mial chaos representations in a form that is suitable to the MCMC implementation.

(b) A main processing step, which performs MCMC inference of the distribution of the
parameters to be calibrated, using the experimental data generated by runs of the test
application that corresponds to the simulated application used in the main step of the
first phase.

(c) A post-processing step in which, in order to obtain a reliable Markov chains, the orig-
inally computed ones are “thinned” by the means of user-defined origin and stride
control parameters.

3. Last, the worflow also provides subsequent analysis steps which extracts various quantities
of interest, such as acceptance rate and maximum a posterior estimates of the inference
parameters. It also re-scales to their original physical scale all obtained quantities which are
normalized in the computational process.

3.2 Tools

The tarball provides the following extensions to UQTk:

9



• uq pc.py: A Python wrapper to call the relevant pre and post-processing steps of the first
phase, whose corresponding methods are provided in UQTk.

• model.py: A Python file providing a helper class and methods for the above wrapper.

• rescale.x: A Bash script to un-scale quantities contained in an input stream from a physical
scale to normalized [−1,1] intervals, as well as to provide the converse operation given an
input physical state.

In addition, the tarball provides the following Python scripts in order to implement the scheme
explained in §3.1:

• extract matrix.py: A Python script to extract the estimated times, as simulated by the
main step of the first phase of the work flow, and transform them into a matrix form suitable
for the post-processing step using uq pc.py.

• generate hypercube.py: A small convenience Python script to generate the normalized
hypercube (with dimension equal to the number of calibration parameters) used as input by
the MCMC engine, and in the form expected by it.

• extract PC.py: A Python script providing the glue between the first and second stages of
the workflow. Specifically, it extracts those data in the surrogate model output by the first
phase that are needed by the parameter inference scheme and prepares them in the form that
is expected by the MCMC code.

• thin chain.py: A Python script to “thin” a computed Markov chain, given a starting point
and a stride. For instance, one can decide to retain only one in 10 computed points within
the last half of the chain.

• workflow.sh: A shell script that assembles all the above, along with a number of shell
commands, to implement the workflow described in §3.1. This script has a number of control
parameters which are described below.

Note that at this point, all steps of the scheme described in §3.1 are implemented, except for the
parameter sweep of calling SST/Macro simulations over the set of quadrature points, because this
step is entirely defined by the nature of experiment of interest. As a result and for the sake of gen-
erality, we decided to not provide a default parameter sweep implementation as the commonalities
between conceivable experiments are essentially reduced to nil. Instead, we provide an exemplar
Python script in §4, which can be either customized for experiments close to that explained here,
or used as a template to devise entirely different experiments.

3.3 Control Parameters

The workflow script has the following input parameters:
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P DOMAIN : The name of a file providing the support of the uniform prior for each calibration
parameter. This file must have 2 columns (lower and upper bounds) and as many rows as
there are calibration parameters.

X DATA : The name of a file containing the design parameters over which the experimental com-
putations where executed. The number of columns is equal to the number of design param-
eters and the number of rows is equal to the number of individual experiments.

Y DATA : The name of a file containing the results of the experimental computations where
executed. The number of columns is equal to the 1 as only one result per experiment is
considered (execution time). and the number of rows is equal to the number of individual
experiments.

N QUAD PER DIM : Number of quadrature points per dimension.

N VALIDATION : Number of additional validation points, to be added to the set of quadrature
points.

DIM : Dimensionality of the problem, i.e., the number of calibration (inference) parameters.

ORDER : Order of the polynomial chaos surrogates.

N OBS : Number of individual experiments (observations).

N THIN : Starting point, expresssed as a fraction of the entire chain length, for the thinning
process of the computed Markov chain.

R THIN : Fraction of the computed Markov chain to be retained in the thinning process, beginning
after the starting point.

N STEPS : Number of steps in the MCMC inference.

GAMMA : Acceptance rat for the MCMC scheme.

Note that the union of all control parameters of each of the individual components contained in the
workflow is substantially richer than this list. However, only those control parameters which we
found useful during our first phase of experiments are exposed here. It is possible, and even likely,
that subsequent work will result in more control parameters be available.

3.4 Output

The workflow is executed as follows:

./workflow.sh
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and it prints information to standard output about its current stage until it completes. The last
printed values are those of the the MAP estimates of the inference parameters.

In addition, the workflow creates the following output data files:

accept rate.dat : Containing the MCMC acceptance rates computed every 5%The full com-
puted Markov chain, with normalized values for the inference parameters.

chain.dat : The full computed Markov chain, with normalized values for the inference param-
eters.

thin chain.dat : The “thinned” subchain extracted from the above.

MAPparams.dat : Containing the MAP estimates of the normalized inference parameters, as
well as that of the variance.

MAPparams sc.dat : Containing the MAP estimates of the inference parameters, rescaled to
their corresponding original physical scales.

allsens.dat : Containing the sensitivy contributions to each of the design parameters in nor-
malized scale, for each individual experiment.

allsens sc.dat : Containing the sensitivy contributions to each of the design parameters in
physical scale, for each individual experiment.
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4 Example

We provide here a detailed example to illustrate how the abovementioned tool set can be used for
model calibration and validation of SST/Macro simulations.

4.1 Skeleton Application

The tarball provides the skeleton application in the form of C++ programm making MPI calls which
will be intercepted by SST/Macro. This skeleton application is contained in a file called main.cc
and is provided along with a Makefile so that it suffices to execute the following command:

make

in order to build the skeleton application and link it against the SST/Macro libraries. As a result,
an executable called runsst will be created.

In the considered examplar application, 2 design parameters are used, so that the Cartesian prod-
uct of their sets of possible values provide the set of experiments whose results can be either
experimental (calibration data) when obtained by running the test application on a real platform
while executing all paralllel communications, or simulated (inference data) when obtained with
SST/Macro simulations which capture MPI calls and estimate their corresponding execution time
given a hardware architecture otherwise fixed (i.e., the sweep is performed while only the calibra-
tion parameters vary in the SST/Macro input decks).

4.2 Calibration Parameters

The exemplar case provided in the tarball is 3-dimensional, as the calibration (inference) param-
eters represent, respectively: network bandwith (expressed in Bytes per second), network hop
latency (expressed in seconds), and injection latency (expressed in seconds too).

Therefore, in order to complete the implementation of the workflow of §3.1 for this examplar
case, the tarball also contains a Python script, called parameter sweep.py, which provides the
SST/Macro parameter sweep driver of the design parameters, across the pre-processed quadrature
points, for a handful of possible otherwise constant hardware configurations (in SST/Macro input
deck format).

4.3 Experimental Data

The tarball also contains a subdirectory data example in which the files rank size 8x127.dat
and time 8x127.dat can be found. These files respectively provide the input parameters and
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corresponding execution times of the non-skeletonized application (thus with actual MPI calls)
measured on a real parallel system.

Specifically, the input parameters are, first, the computational node index (each node corresponding
to a unique set of possible paths through the network from the initiating node, considered as node 0)
and, second, the message size sent my MPI by the application. There are 127 computational nodes
and 8 different sizes, resulting in 1016 lines in each of these files, viewed as 1016 independent
experiments.

In addition, the experimental data directory contains a file call pdomain 3d.dat, which provides
example bounds for the support of the uniform priors used for each of 3 inference parameters
used in this exemplar case. These values are provided only for the sake of illustration but can me
modified as desired; however, should a different input file be created, its number of columns must
obviously match the number of columns of inference parameters.

4.4 Results

With the following workflow input parameters (which are those provided in the tarball):

P_DOMAIN="./data_example/pdomain_3d.dat"
X_DATA="./data_example/rank_size_8x127.dat"
Y_DATA="./data_example/time_8x127.dat"
N_QUAD_PER_DIM=4
N_VALIDATION=0
DIM=3
ORDER=3
N_OBS=1016
N_THIN=0.5
R_THIN=0.01
N_STEPS=100000
GAMMA=0.1

the workflow outputs the following maximum a posteriori (MAP) estimates for the 3 inference
parameters, respectively:

4.023965718024637e+08 7.195485857933070e-08 9.546343308896442e-07

i.e., approximately 0.41GB/s for the network bandwith, 72ns for the hop latency, and 0.95µs for
the injection latency. The corresponding values expected from expert knowledge are 0.38GB/s for
the network bandwith, 100ns for the network latency, and 1–2µs.
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5 Future Work

This brief report discussed the status of ongoing work at the time of printing. None of the material
provided above is intended to remain in the fixed form, not even the workflow would can evolve
substantially and be modified to allow for different experiments.

In particular, our findings so far indicate that interesting directions for future research include in
particular the following:

• Perform inference with the plain model without invoking surrogates, i.e. eliminate the first
stage of the workflow, and instead execute SST/Macro simulations within the computing step
of the second stage.

• Remove non-important parameters from inference (which appears to be the case for example
for the hop latency in our examplar case), assuming the input priors were chosen correctly.

• Do cross-validation would be useful, i.e., hide some data, train with the rest and validate
with the hidden data.
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